


Algorithm Design
Techniques

@ Greedy
@ Divide and Conquer
@ Dynamic Programming

® Network Flows



Algorithm Design

Divide and
Greedy
Conquer
Formulate problem ? ?
Design algorithm less work | more work
Prove correctness more work | less work
Analyze running time less work | more work




Divide and Conquer

Divide-and-conquer.

@Divide problem into several parts.

@ Solve each part recursively.

@ Combine solutions to sub-problems info overall
solution.

Most common usage:
®@Problem of size n = two equal parts of size n/2
@ Combine solutions in linear time.



Mergesort

Break up

Solve

Combine




MergesomL

mergesort(m, low, high) {

Solve base case

[ES8En ergifio, tow. SINLE hiav)
} -

) Combine results



Mergesort

mergesort(m, low, high) {
if high == low {

T ;

} VA o Complexity?

else if (high == low + 1) {

sort m[low] and m[high]; Base case - O(1)

S Divide - 0O(1)
) Recursive cases ?7?
else § Merge - O(n)

middle = length(m) / 2
mergesort(m, low, middle-1)
mergesort(m, middle, high)

return merge(m, low, middle, high)



Accounting:
Merge Sorted Lists

@ Input: sorted listsA = ai;,az,..,a, and B
bi1,bs,..,bn

@ Output: combined sorted list

e

Merged result




Accounting:
Merge Two Sorted Lists

i=1, =1
while (both lists are nonempty) ({
if (ai < by) {

append a; to output list Accounting scheme:

increment i each entry from
} input list is fouched
else ({ once

append b; to output list — 0(n)

increment j

}
}

append remainder of nonempty list
to output 1list



mergesort Recurrence
Relation

@ T(n) = running time for input of size n

T(n) < 2 T(n/2) + cn whenn > 2

T(2) < c

Problem: How do we solve this for a O() value?



Generalized Recurrence
Problem

@ Instead of dividing the problem info 2
subproblems, divide it intfo q subproblems.

@ Still have linear cost for the divide and
merge steps combined.

® Consider 2 cases:



Summary

@ Divide and conquer where:
@ O(n) work is done for divide and merge
combined
@ Subproblems have size n/2

@ One subproblem on each recursion => O(n)
® 2 subproblems on each recursion => O(n log n)

@ >2 subproblems on each recursion => O(n'°9 9)



